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Abstract  Behavioral and evolutionary ecology made enormous progress in the last 50 years by using the assumption that 
the modeler/observer is external to the organism and its environment. This allows specifying details of the environment 
(e.g. predation risk or the probability of finding food) and then using a fitness optimization model to predict the behaviors 
that are the end point of natural selection. Doing so can be called the third-person perspective of the organism. More than 
80 years ago, Jakob von Uexküll argued that a first-person perspective is possible if we replace the external observer’s 
description of the environment by the organism’s subjective characterization of itself and its surroundings based on its 
sensory data, and allow those sensory data to shape behavior. The first-person umwelt model becomes an evolutionary 
one when the genes determining the sensory responses evolve. I use a canonical problem of habitat selection (which will 
always be an important problem in biology and which was one of Leon Blaustein’s favorite topics of research) to illustrate 
construction of first-person umwelt and third-person fitness optimization models. A canonical problem is the simplest but 
still interesting form of a collection of similar problems, with a focus on what is essential to the collection as a whole. In 
particular, a canonical problem does not model any particular situation, but has much in common with many situations. 
Here, the canonical problem focuses on an organism that needs to find a refuge from a harsh environmental season that 
begins at a fixed time when refuges vary in the level of protection from the harsh environment. Individuals who survive the 
harsh environmental season successfully reproduce. When searching for refuges, organisms experience predation risk so 
that the third-person fitness optimization model answers “when an organism encounters a habitat of a specific quality at a 
given time, is it predicted to settle or continue searching”? The first-person umwelt model is based on the assumptions that 
i) the organism has sensory inputs that provide information on quality of a habitat (settling is more likely in higher quality 
habitats) and the remaining time before the onset of the harsh environmental season (settling is more likely when less time 
remains), ii) the sensory information is combined to determine behavior, and iii) the genotypic architecture underlying the 
sensory functions evolves by natural selection. After developing predictions from the models by simulating populations 
following the rules developed from each, I use effect size measured by Cohen’s d to explore how evolution of the genes of the 
response functions in the first-person umwelt model affects survival and convergence of the predictions of the first-person 
umwelt and third-person fitness optimization models.
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To the memory of Leon Blaustein, a dear 
friend and wonderful colleague

Introduction

Habitat selection will always be an important problem in 
ecology and evolutionary biology (Morris, 2011; Northrup 
et al., 2022) and was one of Leon Blaustein’s favorite top-
ics. I had the great pleasure of discussing habitat selec-
tion with him for more than 30 years (Figure 1) leading 
to publications in behavioral, community, and population 
ecology (Blaustein et al., 2004; Eitam et al., 2002, 2003; 
Kiflawi et al., 2003a, 2003b, Sadeh et al., 2009; Segev et 
al., 2009, 2011). In this paper, I focus on the behavioral 

ecology of habitat selection because the population and 
community ecological effects of habitat selection must 
begin with the individual (Piper, 2011).

First-person and third-person models in behavioral and 
evolutionary ecology

One reason for the great advances in behavioral ecol-
ogy in the last 50 years was and still is the focus on the 
third-person perspective when modeling behavior. In the 
third-person perspective, we specify an environment, typi-
cally describe an organism by “it” and ask the question 
“how do we predict its behavior” as shorthand for “how do 
we predict natural selection will act on the suite of available 
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behaviors?”. We then use one of the modeling approaches 
for fitness maximization (e.g., the Euler-Lotka equation, 
rate-maximizing optimal foraging theory, age and/or 
state-dependent life history theory, frequency-dependent 
game theory, or sometimes individual-based models [see 
Giske et al., 2025 for more details]) to predict the behav-
iors that are the end points of natural selection. This is a 
very powerful paradigm for understanding observations 
and making testable predictions. In general, third-person 
perspectives focus on ultimate considerations and do 
not model proximate mechanisms, but there are excep-
tions (Mangel and Satterthwaite, 2008; McNamara and 
Houston, 2009).

An alternative is the first-person perspective (Roitberg, 
1985; Ginsburg and Jablonka, 2019) in which the opera-
tive question is “What should I [the organism] do at this 
time, in this environment given my physiological state?”. 
The philosopher Thomas Nagel discussed the perspective 
more than 50 years ago by asking “What is it like to be 
a bat?” (Nagel, 1974) and concluded that we could never 
know. Harari (2017, pg 362ff) agrees with that conclusion, 
but Dacey (2025) is not so sure.

Jakob von Uexküll (von Uexküll, 1934/2010) argued 
that a first-person perspective is possible if we replace the 
third-person observer’s description of the environment by 
the organism’s subjective model of itself and its surround-
ings, based on its sensory data. He called this approach 
“umwelt” from the German word meaning environment, 
with the understanding that we need to focus on how indi-
viduals of a particular species experience the world via 
their sensory systems. While the third-person perspective 
is general [e.g., the Marginal Value Theorem (Charnov, 
1976; Mangel, 2006)], the first-person perspective is idio-
syncratic, but that does not prohibit the construction of 
first-person models (Giske et al., 2013, 2014). General 
introductions to von Uexküll’s ideas can be found in Kohl 
and Kohl (2000) and Yong (2023), and to first-person 

Figure 1. Left panel: Leon Blaustein and me in 1987, discussing whether re-flooding the Hula Valley would 
provide habitat for malarial carrying mosquitos and if yes, could they re-establish in Israel? Right panel: 
Together in 2000 preparing experimental habitats for the habitat selection work reported in Kiflawi et al. 
(2003a, 2003b).

perspectives more technically in Budaev et al. (2019, 
2024). The first-person model becomes an evolutionary 
one the genes determining the sensory responses evolve 
(Giske et al., 2013, 2014).

An example of the difference between the two perspec-
tives is provided by the work of Schmidt and Smith (1987, 
and references there-in) on egg laying by the parasitoid 
wasp Trichogramma minutum. All else being equal, para-
sitic wasps lay more eggs in larger hosts. With the third-
person perspective, specifying the environment means 
describing the distribution of the sizes of hosts, the num-
ber and size of offspring emerging from a host of a given 
size, and the rate of natural mortality. We can then develop 
models to predict the number of eggs laid in hosts of dif-
ferent sizes as a function of time in the reproductive season 
and the egg complement of the wasp. A simple metric of 
fitness (Charnov and Skinner, 1984, 1985) is the number 
of offspring emerging from a host of a particular volume as 
a function of the number of eggs laid in that host; a more 
complicated metric is the number of grand-offspring as a 
function of number of eggs laid (Clark and Mangel, 2000, 
Chapter 4). One can then use a third-person model, such 
as rate maximizing (Charnov and Skinner, 1984, 1985) 
or state dependent life history theory implemented by 
Stochastic Dynamic Programming (Mangel, 1987; Mangel 
and Clark, 1988) to predict the number of eggs laid in hosts 
of different volumes, and compare theory and empirical 
results (Mangel and Clark, 1988, Chapter 4; Clark and 
Mangel, 2000, Chapter 4).

In a first-person perspective, we ask how the wasp 
knows the size of a host and how many eggs it has. 
Schmidt and Smith (1987) showed that Trichogramma 
use relative curvature – determined as they walk along 
the host surface – to provide a measure of host volume. 
Schmidt and Smith (1987) furthermore provided a spe-
cific mechanism for the measurement of curvature: that 
the wasp determines curvature by detecting changes in 
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the scapal-head angle of the antennae. Consistent with the 
idiosyncratic nature of the first-person model, they wrote: 
“It is particularly significant that this mechanism depends 
upon the size of the wasp and its appendages relative to the 
curvature of the host surface … it cannot provide informa-
tion about the absolute curvature or diameter of a host” 
(Schmidt and Smith, 1987, pg 162–163). Similarly, stretch 
receptors in the abdomen of the wasp provide a sense of its 
egg complement. It also appears that these parasitoids rec-
ognize relatively short time intervals (Schmidt and Smith, 
1987a), in that Trichogramma lay more eggs in a host egg 
when it takes more time to walk on it even if there is little 
or no change in curvature (Parent et al., 2016).

It is important to recognize from the outset that the dif-
ference between first and third-person models is not the 
difference between proximate explanation and ultimate 
explanation. Rather, it is a difference of how the observer/
modeler is involved. In third-person models, the observer/
modeler is external to the organism and its environment, 
which allows us to proceed with a model based on fitness 
maximization. In first-person models, the observer/mod-
eler is internal to the organism, which receives signals from 
itself and the environment that guide its behavior. In this 
regard, the difference between first and third-person mod-
els echoes some of the issues in modern cosmology and the 
difference between the way that Newton (third-person) and 
Leibniz (first-person) viewed the world (Smolin (1997), 
pgs. 213–232, 260ff).

A canonical problem (Mangel, 2015) is the simplest 
but still interesting form of a collection of similar prob-
lems, with a focus on what is essential to the collection 
as a whole. Thus a canonical problem does not model any 
particular situation, but has much in common with many 
situations. Two other canonical problems in behavioral 
ecology – activity choice and resource allocation – are dis-
cussed in Mangel (2015).

Although he was not a modeler, Leon Blaustein deeply 
appreciated what models could do to support and enhance 
biological research. We also had many conversations about 
how to confront models and data. He really loved the notion 
of the Akaike Information Criterion (AIC); AIC-like ideas 
appear in Saward-Arav et al. (2016). There are no empiri-
cal data in this paper, but because of two modeling frame-
works, we require a method for comparing predictions 
from the two models. As explained below, this will be done 
using effect size (Cohen’s d).

Overview of the paper

In the canonical problem in habitat selection, an individual 
must select a refuge allowing it to survive a harsh envi-
ronmental season before reproduction. In particular, we 
will characterize survival while searching for a refuge 
prior to the onset of the harsh environment, the distribu-
tion of refuges of different quality, and survival during the 
harsh environmental season as a function of the quality of 
the refuge.

The third-person fitness optimization model is a 
straightforward application of Stochastic Dynamic 

Programming (SDP; Mangel and Clark, 1988; Houston 
and McNamara, 1999; Clark and Mangel, 2000). The SDP 
model leads to a boundary in the plane determined by time 
and refuge quality (henceforth the time/quality plane) that 
separates regions in which the focal individual is predicted 
to settle from those in which it is predicted to continue 
searching. This boundary curve allows us to simulate by 
Monte Carlo methods the behaviors of a large number of 
individuals who randomly encounter habitats while expe-
riencing mortality risk, and who settle in the encountered 
habitat or continue searching. We thereby obtain distribu-
tions of the times of death and settlement.

The first-person umwelt model begins with the assump-
tion that the behavior of an individual is determined by 
the response to sensory signals from the environment 
and its physiology. For the canonical problem, we model 
a response to quality in which a stronger response means 
that the individual is more likely to settle and a response 
to time in which a stronger response means that the indi-
vidual is more likely to continue searching. We assume 
that these are sigmoidal functions (Marreiros et al., 2008; 
Rasamoelina et al., 2020; Sharma et al., 2020) of the rel-
evant variable (quality or time), in which evolved genes 
determine the strength of the response. By comparing the 
two responses, we predict whether the focal individual 
settles in the encountered habitat or continues to search. 
Forward simulation, also by Monte Carlo methods, allows 
us to obtain distributions of times of death and settlement, 
as in the third-person model.

The first-person umwelt model becomes an evolution-
ary model when natural selection acts on the genotypic 
architecture of the response functions. I use an extension 
of the equations of classical quantitative genetics, in which 
the values of offspring genes are the midpoint of the paren-
tal values modified by a Gaussian term (the classical equa-
tion) and then further modified by a uniformly distributed 
random variable as a proxy for a full genetic algorithm. For 
simplicity, I assume strong density dependence acting on 
the offspring of surviving individuals, so that population 
size is constant across generations.

For the first-person umwelt model itself, we can ask if 
evolution of the genes of the response functions increases 
survival. Each simulation of N individuals gives a single 
value of the number of individuals surviving to reproduce, 
and thus an estimate of the probability of survival to repro-
duction. We can then compare the fraction of individuals 
surviving in the initial generation, when the distribution 
of genotypes is random by assumption, and subsequent 
evolved generations. When survival in the evolved genera-
tions is greater than that in the initial generation, we con-
clude that evolution of the genes in the response function 
affects survival to reproduction.

Both the first-person umwelt and the third-person fit-
ness optimization model produce (in every generation for 
the first-person umwelt model) distributions of the times 
of death and settlement. We can assess if the predictions 
of the first-person umwelt model are converging to the 
evolutionary endpoint predicted by the third-person fit-
ness optimization model if the “distance” between the 
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distributions for times of death and settlement are closer in 
evolved generations than in the initial generation. To do so, 
we use the measure of effect size Cohen’s d (Cohen, 1988, 
1994; Nakagaw and Cuthill, 2007; Nakagawa et al., 2017; 
Methratta, 2025).

I show that evolution of the genotypic architecture 
of the response functions leads to increased survival. 
Evolution is rapid with gene distributions stabilizing in 
20–25 generations or less. Genetic variation is maintained 
or lost according to parameters characterizing inheritance. 
I then use Cohen’s d to show that, as a result of the evolution 
of genes in the response functions, the first-person umwelt 
model makes predictions concerning times of death and 
settlement converging to those of the third-person fitness 
optimization model.

I begin the Discussion by noting that the first-person 
umwelt model does not require assuming that the organ-
ism knows the rate of mortality (as a third-person fitness 
optimization model does), with implications for a chang-
ing environment. I then discuss possible extensions of the 
models such as including state variables, using offspring 
production rather than parental survival as the metric of 
Darwinian fitness, including additional mortality by a 
secondary predator that is not present all of the time but 
only sporadically, moving towards the dynamic game, and 
applying methods for computing effect size that use entire 
distributions rather than the mean and variance alone 
(which is what Cohen’s d uses).

The canonical model developed here can be viewed 
as the first in a series of models of increasing complexity 
for understanding habitat selection (cf. Clark and Mangel 
(2000, Chapter 4)). Furthermore, first-person umwelt mod-
els move us towards answering the question of what it is 
like to be a non-human organism.

Methods

In the canonical problem for habitat selection, we envision 
a focal individual in a population of univoltine organisms 
in a seasonal environment. The annual cycle consists of 
a season in which individuals are born, gather resources 
for growth and future reproduction, and search for refuges, 
followed by a season in which the environment is harsh, 
and culminates with reproduction by individuals who sur-
vived the harsh environmental season. This description fits 
both deserts and temperate regions with appropriate inter-
pretation of the seasons.

If the environment in the first season, when resources 
are gathered and refuges are sought, is sufficiently rich 
then we can assume that individuals accumulate all the 
resources needed to avoid starvation during the harsh envi-
ronmental season and to reproduce at the end of that season 
(in the Discussion I discuss how to relax that assumption 
by including a state variable in the model). Searching for a 
refuge before the onset of the harsh environmental season 
thus becomes the task of individuals. The suitability of a 
particular refuge during the harsh environmental season 
is measured by quality q that determines the probability 
of surviving the harsh environmental season. Because this 

is a canonical problem, I do not give specific biological 
details about quality.

Search for an appropriate refuge commences at time 
t = 1 and must end before the onset of the harsh environ-
mental season at t = T. At each discrete time, the focal 
individual encounters a potential refuge whose quality is 
drawn from a distribution (described below) and can either 
settle at the encountered habitat or continue searching.

Habitat selection is inherently a density dependent phe-
nomenon (Northrup et al. (2022); McNamara and Leimar 
(2020)) because conspecifics are searching for habitats 
concomitantly with the focal individual. Thus the distribu-
tion of habitat quality changes from one time to the next. 
We finesse density dependence by specifying the time dis-
tribution of habitat quality (explained below).

While searching for suitable habitats, the focal indi-
vidual experiences a constant probability of survival. Indi
viduals who settle before T survive to reproduce depending 
upon quality of the refuge. Because of the assumption of 
a rich environment for resource gathering during the first 
season, at the end of the harsh environmental season all 
survivors are credited with the same level of reproduction 
(see Discussion for an alternative).

Mortality

We denote the probability of surviving a single interval of 
time by σ (if one prefers to think about the rate of mortality 
M, it can be determined from σ = e−M, where the units of 
M are 1/time). When survival is independent across time 
intervals the probability of surviving to time t is σt−1. When 
σ = 0.975, as in the upper panel of Figure 2, survival to the 
time horizon T = 45 is just about 30%.

Survival during the harsh environmental season 
depending upon habitat quality

Survival is a key determinant of fitness and is often identi-
fied with fitness (e.g. Siepielski et al., 2009, 2017; Stroud 
et al., 2023); we follow that tradition for the canonical 
problem. We model the survival over the harsh environ-
mental season of an individual settling in a habitat with 
quality q, 𝒮(q), as

S q e
e

q q

q q
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The two parameters in Equation 1 characterize the quality 
giving 50% survival (q₅₀) and how sharply survival rises 
from small (close to 0) to large values (close to 1) as q 
increases (σq). For computations, I set q₅₀ = 0.75 and σq = 
0.05 (middle panel of Figure 2).

Distribution of habitat quality over time

We assume that at t = 1 the distribution of habitat quality 
follows a normal distribution with mean μℎ and standard 
deviation σℎ. For computations, I used μℎ = 0.525 and σℎ = 
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Figure 2. We characterize the environment by survival to time t of the focal organism when σ = 0.975 (upper panel), the probability of surviving 
the harsh environmental season as a function of quality of the settled refuge habitat, from Equation 1 with q₅₀ = 0.75 and σq = 0.05 (middle 
panel), and the distribution of habitat quality at t = 1 (the beginning of the habitat selection process, black line) and T − 1 (red line) the time at 
which individuals have to settle to have any chance of surviving the harsh environmental season (lower panel). An individual will not survive 
the harsh environmental season unless it has settled in a refuge before T. These are sufficient for a third-person fitness optimization model using 
Stochastic Dynamic Programming.
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is a canonical problem, I do not give specific biological 
details about quality.

Search for an appropriate refuge commences at time 
t = 1 and must end before the onset of the harsh environ-
mental season at t = T. At each discrete time, the focal 
individual encounters a potential refuge whose quality is 
drawn from a distribution (described below) and can either 
settle at the encountered habitat or continue searching.

Habitat selection is inherently a density dependent phe-
nomenon (Northrup et al. (2022); McNamara and Leimar 
(2020)) because conspecifics are searching for habitats 
concomitantly with the focal individual. Thus the distribu-
tion of habitat quality changes from one time to the next. 
We finesse density dependence by specifying the time dis-
tribution of habitat quality (explained below).

While searching for suitable habitats, the focal indi-
vidual experiences a constant probability of survival. Indi
viduals who settle before T survive to reproduce depending 
upon quality of the refuge. Because of the assumption of 
a rich environment for resource gathering during the first 
season, at the end of the harsh environmental season all 
survivors are credited with the same level of reproduction 
(see Discussion for an alternative).

Mortality

We denote the probability of surviving a single interval of 
time by σ (if one prefers to think about the rate of mortality 
M, it can be determined from σ = e−M, where the units of 
M are 1/time). When survival is independent across time 
intervals the probability of surviving to time t is σt−1. When 
σ = 0.975, as in the upper panel of Figure 2, survival to the 
time horizon T = 45 is just about 30%.

Survival during the harsh environmental season 
depending upon habitat quality

Survival is a key determinant of fitness and is often identi-
fied with fitness (e.g. Siepielski et al., 2009, 2017; Stroud 
et al., 2023); we follow that tradition for the canonical 
problem. We model the survival over the harsh environ-
mental season of an individual settling in a habitat with 
quality q, 𝒮(q), as
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The two parameters in Equation 1 characterize the quality 
giving 50% survival (q₅₀) and how sharply survival rises 
from small (close to 0) to large values (close to 1) as q 
increases (σq). For computations, I set q₅₀ = 0.75 and σq = 
0.05 (middle panel of Figure 2).

Distribution of habitat quality over time

We assume that at t = 1 the distribution of habitat quality 
follows a normal distribution with mean μℎ and standard 
deviation σℎ. For computations, I used μℎ = 0.525 and σℎ = 
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Figure 2. We characterize the environment by survival to time t of the focal organism when σ = 0.975 (upper panel), the probability of surviving 
the harsh environmental season as a function of quality of the settled refuge habitat, from Equation 1 with q₅₀ = 0.75 and σq = 0.05 (middle 
panel), and the distribution of habitat quality at t = 1 (the beginning of the habitat selection process, black line) and T − 1 (red line) the time at 
which individuals have to settle to have any chance of surviving the harsh environmental season (lower panel). An individual will not survive 
the harsh environmental season unless it has settled in a refuge before T. These are sufficient for a third-person fitness optimization model using 
Stochastic Dynamic Programming.

0.2, and discretized habitat quality into 100 values between 
0.1 and 1.0. If qi and qj denote any of these values, the ini-
tial probability of finding quality qi in the environment is
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In this equation, the denominator is a normalization condi-
tion; 100 discrete habitat qualities is sufficient to make the 

visual presentation look continuous. Lack spatial structure 
in the environment is implicit in Equation 2.

Habitat selection is inherently density dependent 
because when another individual settles into a habitat 
that habitat is no longer available to the focal individ-
ual. Treating this completely requires a dynamic game 
[McNamara and Leimar (2020); Discussion]. To focus on 
the comparison between first- and third-person models, we 
assume that higher quality habitats disappear faster than 
lower quality habitats. In particular if f(qi, t) denotes the 
fraction of habitats with quality qi at the start of time t, we 
assume that
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where δ > 0 characterizes the rate at which habitats disap-
pear due to other individuals selecting them. Because δqi 
increases as qi increases, higher quality habitats disappear 
at a rate faster than lower quality ones. For computations, I 
used δ = 0.2. Equation 3 keeps the Gaussian shape for the 
distribution of quality across habitats but shifts it to the left 
as time increases (lower panel of Figure 2).

The third-person fitness optimization model

Once the environment is specified, the third-person fitness 
optimization model implemented by Stochastic Dynamic 
Programming (SDP) follows directly. We let F(t) denote 
the maximum expected survival from time t to the end of 
the harsh environmental season, given that an individual is 
alive and not settled at time t, where “expected” is taken 
over the stochastic processes of encountering habitats of 
different quality and surviving both mortality while search-
ing and the harsh environmental season. Since T corre-
sponds to the onset of the harsh environmental season and 
there is no chance of surviving from that time onward if the 
individual has not settled, F(T) = 0.

For times t < T, when an individual encounters a habitat 
of quality q, it can either settle in that habitat, thus surviv-
ing the harsh environmental season with probability 𝒮(q) 
or continue searching in the next time t + 1 given that it 
survives the current time t, which occurs with probabil-
ity σ. When the focal individual continues to search and 
survives, its maximum expected survival to the end of the 
harsh environmental season given that it has not settled at 
the start of the next time is F(t + 1). This verbal description 
translates to the following dynamical equation

F(t) = ∑q f (q, t)max[𝒮(q), σF(t + 1)]  (4)

The terms on the right side of Equation 4 are respectively 
the probability of encountering a habitat with quality q in 
search during time t, the probability of surviving to the 
end of the harsh environmental season given the individual 
settles, and the product of surviving from time t to time 
t + 1 and the maximum expected survival from time t + 1 to 
the end of the harsh environmental season. If 𝒮(q) ≥ σF(t + 
1), we predict that the individual will settle (in the case of 
a tie, there is no reason for the individual to subject itself to 
the additional risk of mortality), otherwise we predict that 
it continues to search.

Since F(T) = 0, at time t = T − 1 the individual is pre-
dicted to settle into any habitat that it encounters. For pre-
vious times, there will be a threshold quality q*(t) with 
the property that the individual settles if the encountered 
quality q is at least the threshold and continues searching 
otherwise.

I show the boundary for acceptance of a habitat in 
time/quality plane in the upper panel of Figure 3. The 
boundary curve is a rule guiding the behavior of the organ-
ism and shows a slow broadening of the range of acceptable 

qualities until close to the time horizon. As T is approached, 
a wider range of habitat quality becomes acceptable, until 
at T − 1 we predict the individual will settle in any habitat. 
The shape of the boundary conforms with intuition: early 
in the search for refuges we anticipate that individuals will 
be choosier than when very little time remains. The pre-
cise shape of the boundary curve will, in general, depend 
upon the parameters in Equation 4. These are σ, charac-
terizing survival during search, q₅₀ and σq, characterizing 
survival during the harsh environmental season, and μℎ, 
σℎ, and δ, characterizing the distribution of habitat quality 
in the environment. If survival during search was lower, 
we expect individuals to be less choosy and that the rela-
tively flat part of the boundary curve would be lower, but 
it is much harder to intuit how the boundary curve varies 
with the other parameters. Such a full sensitivity analysis 
is beyond the scope of this paper because of our objective 
is to compare first-person and third-person models. For an 
example of such sensitivity analysis in third-person models 
of parasitoid oviposition behavior see Chapter 4 in Clark 
and Mangel (2000).

In nature, we cannot observe the threshold boundary. 
Rather we observe the behaviors of individuals following 
the rule shown in the upper panel of Figure 3. Monte Carlo 
simulation forward in time (Mangel and Clark, 1988; 
Clark and Mangel, 2000) allows us to simulate data similar 
to that which could be collected by empirical observation.

In brief, the forward Monte Carlo simulation proceeds 
as follows. We simulate a large number N of individuals 
and track

	– Whether individual n is alive or not at time t;
	– whether the individual has settled or not at time t;
	– the time of death if it is not alive, and
	– the time of settlement (if it has settled).

When the time horizon is reached, each individual who has 
settled has probability of surviving the harsh environmen-
tal season determined by Equation 1, replacing q by qn, 
which is the quality of the habitat into which individual n 
settled. The lower panels of Figure 3 show histograms of 
the time of settlement (for those individuals who survived 
until settlement) and the time of death (for those individu-
als who died before settlement) from an initial population 
of 1000 simulated individuals. The mean times of settle-
ment and death are 9.6 and 11.1 respectively for the run 
of the simulation shown. It will be seen that these distribu-
tions generated by the stochastic processes characterizing 
survival are key to assessing convergence of the first- and 
third-person models.

The first-person umwelt model

Budaev et al. (2019) and Giske et al. (2013, 2014) give 
introductions (less and more technical respectively) to 
first-person umwelt modeling in behavioral and evolution-
ary ecology. Since these methods are not as well known as 
those used for third-person fitness optimization models, I 
develop the first-person umwelt model in more detail.
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survival during the harsh environmental season, and μℎ, 
σℎ, and δ, characterizing the distribution of habitat quality 
in the environment. If survival during search was lower, 
we expect individuals to be less choosy and that the rela-
tively flat part of the boundary curve would be lower, but 
it is much harder to intuit how the boundary curve varies 
with the other parameters. Such a full sensitivity analysis 
is beyond the scope of this paper because of our objective 
is to compare first-person and third-person models. For an 
example of such sensitivity analysis in third-person models 
of parasitoid oviposition behavior see Chapter 4 in Clark 
and Mangel (2000).

In nature, we cannot observe the threshold boundary. 
Rather we observe the behaviors of individuals following 
the rule shown in the upper panel of Figure 3. Monte Carlo 
simulation forward in time (Mangel and Clark, 1988; 
Clark and Mangel, 2000) allows us to simulate data similar 
to that which could be collected by empirical observation.

In brief, the forward Monte Carlo simulation proceeds 
as follows. We simulate a large number N of individuals 
and track

	– Whether individual n is alive or not at time t;
	– whether the individual has settled or not at time t;
	– the time of death if it is not alive, and
	– the time of settlement (if it has settled).

When the time horizon is reached, each individual who has 
settled has probability of surviving the harsh environmen-
tal season determined by Equation 1, replacing q by qn, 
which is the quality of the habitat into which individual n 
settled. The lower panels of Figure 3 show histograms of 
the time of settlement (for those individuals who survived 
until settlement) and the time of death (for those individu-
als who died before settlement) from an initial population 
of 1000 simulated individuals. The mean times of settle-
ment and death are 9.6 and 11.1 respectively for the run 
of the simulation shown. It will be seen that these distribu-
tions generated by the stochastic processes characterizing 
survival are key to assessing convergence of the first- and 
third-person models.

The first-person umwelt model

Budaev et al. (2019) and Giske et al. (2013, 2014) give 
introductions (less and more technical respectively) to 
first-person umwelt modeling in behavioral and evolution-
ary ecology. Since these methods are not as well known as 
those used for third-person fitness optimization models, I 
develop the first-person umwelt model in more detail.

0 10 20 30 40

0.
0

0.
4

0.
8

Time

Q
ua

lit
y

Accept

Reject

Times of settlement

Time of settlement

Fr
eq

ue
nc

y

0 10 20 30 40

0
10

0
20

0
30

0

Times of death

Time of death

Fr
eq

ue
nc

y

0 10 20 30 40

0
20

60
10

0

Figure 3. Upper panel: The SDP equation, Equation 4, generates a boundary in the time/quality plane that separates habitat qualities and times 
for which the individual is predicted to accept the encountered habitat from those in which it is predicted to continue searching. Middle and 
lower panels: Time of settlement (middle) and the time of death (lower) from an initial population of 1000 simulated individuals.

In the first-person umwelt model (Figure 4) an individ-
ual receives sensory signals from the environment (upper 
right of the figure) and its evolved neuronal networks 
(upper left of the figure) and assesses the sensory inputs 
(middle of the figure) to determine behavior (bottom of the 
figure). The behavior may influence the environment, and 
thus change future environmental signals. The response 
functions involve different physiological systems accord-
ing to the organism and situation and are assumed to have 
an underlying genetic structure that responds to natural 
selection. When behavior affects survival and reproduc-
tive success, it can influence the genes and neurons deter-
mining the sensory response functions. For the canonical 
model, we do not model the neuronal networks explicitly 
(see Giske et al. (2014) and references there-in for details) 
but focus on the genetic architecture shaping the response 
functions and the evolution of the architecture.

For the canonical problem, we consider sensory 
responses to quality and time, and how to combine them 
to determine whether an individual continues searching or 
settles if it encounters a habitat of quality q at time t. The 
genetic architecture underlying a given behavior could be 
represented single genes, gene complexes, or a mixture of 
single genes and gene complexes (Gardiner et al., 1998) 
that evolve in response to environmental selection pres-
sures. In our previous work [Giske et al. (2013, 2014), 
particularly the supplementary material, and Eliassen 
et al. (2016), particularly pg. 94ff] multiple genes evolve 
via sophisticated genetic algorithms. When many genes 
evolve in the genetic algorithm, the genotypic values are 
approximately continuous. Thus, for the canonical prob-
lem our starting assumption is that the genotypic architec-
ture has continuous quantitative traits, so we characterize 
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and effective (Marreiros et al. (2008); Giske et al. (2013, 
2014); Rasamoelina et al. (2020); Sharma et al. (2020)).

Inspection of Equation 5 shows that yq is the value of 
quality q at which the response function is Rq(q) = 0.5. In 
the upper panel of Figure 5, I show the response for three 
values of xq when yq is fixed. In the lower panel, I show a 
heat map of the response in the quality/xq plane, again with 
yq fixed. The upper panel shows how the sigmoidal nature 
of the response depends upon the X-gene for quality and 
the lower panel gives a broad view of how the value of the 
X-gene and quality interact in a nonlinear way to shape the 
strength of the response.

We let Rt(t) denote the response to time, measured by 
the organism’s internal clock. I do not model the clock 
itself, but such genes have existed for a very long time 
(Seth, 2021). We assume a stronger response when consid-
erable time remains, so that in analogy to Equation 5

R T t
y T t

tt
x

t
x x

t

t t
( ) ( )

( )
  (6)

In this equation yt is the value of time remaining time, 
T − t, that gives a 50% response. In Figure 6, I show the 
response to time for three values of xt when yt is fixed 
(upper panel) and a heat map in the time/xt plane of the 
response function.

The Global Organismic State and probability of settling

An individual searching for habitat has an environmental 
and genetic state represented as a vector (t, q, xq, yq, xt, 
yt) and asks the question “Given the environmental and 
genetic state vector, should I settle or keep searching?” The 

the genotypes of offspring as the midpoint of the parental 
values, modified by random factors.

Sigmoidal response functions that range from 0 (no 
response) to 1 (response of maximum strength) are com-
monly used in neural network models (e.g. Marreiros 
et al. (2008); Rasamoelina et al. (2020); Sharma et al. 
(2020)). We also employed sigmoids in previous work on 
first-person modeling (Giske et al. (2013, 2014)) and I use 
them here.

Response functions for quality and time, and the 
propensity to settle

We let Rq(q) denote the response to a habitat of quality q 
and assume that the response increases as q does. In par-
ticular, we assume that the response is determined by two 
components of the focal individual’s genotype, denoted by 
xq and yq:

R q
q y

qq

x

x
q
x

q

q q
( )   (5)

Henceforth I will refer to xq and yq (and the analogous vari-
ables for time) as the X-gene and Y-gene for quality (in 
analogy, for time). For computations, I let the gene values 
range between 1.0 and 5.0. In previous work [Giske et al. 
(2013, 2014) or Budaev et al. (2018)], we used a complex 
genetic algorithm to determine the genes in the response 
functions. Assuming that the genotypes can be treated as 
quantitative traits simplifies the models of their evolution.

There are other ways to model sigmoidal functions, 
for example by replacing the power functions by expo-
nentials, but the form shown in Equation 5 is long-tested 

Figure 4. The basic structure of the first-person umwelt model. An individual receives sensory signals from the environment (upper right) 
and its own evolved neuronal networks (upper left) allowing assessment of competing sensory inputs (middle) from which a behavioral 
response (bottom) emerges. The behavioral response may influence the environment, and thus change future environmental signals. When 
the behavioral response affects survival and reproductive success, natural selection may change the genes determining the sensory responses.
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lower panels of Figures 5 and 6 suggest qualitative predic-
tions. That is, imagine that (t, q, xq, yq, xt, yt) puts the indi-
vidual on the left side of both figures. Since the response 
to quality is low and the response to time is high we predict 
that the individual will keep searching. Similarly, if the (t, 
q, xq, yq, xt, yt) puts the individual on the far right corner 
of both figures, the response to quality is high and the 
response to time is low and we predict the individual will 
accept the encountered habitat. But what would happen 
if the individual encountered a lower quality habitat, say 
around q ≈ 0.4 when t ≈ 40? Then it is not so clear what we 
would predict. Similarly, if time were between 20 and 30 
and quality between 0.8 and 0.9, we need something more 
than eye-balling the figures to predict behavior.

To go beyond eye-balling figures to predict behav-
ior, we need to represent the overall state of the organ-
ism in response to the signals. This is called the Global 
Organismic State [GOS; Budaev et al. (2019); Giske et al. 
(2025) and references there-in]. We capture the GOS by 
the difference in the response functions Rq(q|xq, yq)−Rt(t|xt, 
yt), where the vertical lines remind us that the responses 
are conditioned on the genes. In the canonical model the 

Figure 5. Upper panel: The response function Rq(q) for three values of the X-gene xq when the Y gene yq = 0.485. Lower panel: A heat map 
of the response Rq(q) in the quality/xq plane, again with yq = 0.485.

GOS is the propensity to settle. For simplicity, I write Rq(q) 
and Rt(t) with the genes understood.

We use another sigmoidal function to convert the pro-
pensity to settle to a probability psettle(Rq(q), Rt(t)) of set-
tling in a habitat of quality q at time t given the responses 
Rq(q) and Rt(t). We assume that a strong response to quality 
increases the likelihood of settling and a strong response 
to time increases the likelihood of continuing to search so 
that the probability of settling is

p R R e
e

q tsettle q t

R R

R R

q t

q t

q t settle

q t
( ( ) ( )),

[ ]/

[

( ) ( )

( ) ( )1 ]]/ settle
  (7)

where σsettle is another genetic parameter capturing the dis-
persion of the sigmoid. When σsettle is much greater than 
Rq(q) − Rt(t), the probability of settling is roughly 1/2 
regardless of the value of the propensity to settle; when 
it is much less than the absolute value of Rq(q) − Rt(t) the 
probability of settling will be close to zero or close to 1, 
rising sharply as the propensity traverses from negative to 
positive values.
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The individual is now characterized by the five genes 
xq, yq, xt, yt and σsettle. In order to keep comparisons between 
the first- and third-person models as simple as possible, I 
assume that yq, yt and σsettle are rapidly fixed (the Y-genes at 
the values used above yq = 0.485, yt = 4, and σsettle = 0.1). 
Doing so allows us to focus on the two X-genes, which is 
a complicated enough.

In Figure 7, I show heat maps in the time/quality plane 
of the probability of settling for eight randomly chosen 
combinations of the two X-genes. There are broad swaths 
in the time/quality plane where individuals will almost 
surely continue to search (the dark blue regions), and other 
areas (the upper right corners that are red) where individu-
als will almost surely settle. But the particular way these 
regions are joined varies according to the genes that an 
individual carries, and this will lead to variation in the 
acceptance of sites with moderate quality over time (the 
sky-blue bands).

It is straightforward to adapt the forward Monte Carlo 
simulation from the third-person fitness optimization 
model to the first-person umwelt model. The difference is 
that in the third-person model only a single population is 
simulated but in the first-person model we simulate across 
generations that are linked by dynamics of the genes. 
Because of the assumption of a rich resource environment 
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Figure 7. Heat maps in the time/quality plane of the probability of settling for eight randomly chosen combinations of the quality and time 
X-genes, with the Y- and σ- genes fixed.

during the season while searching, all survivors have the 
same number of offspring. In each generation, the forward 
simulation thus produces histograms analogous to those in 
the middle and lower panel of Figure 3. However, because 
survival over the harsh environmental season is deter-
mined by the genes of the parents, the genetic structure of 
the population will change from one generation to the next.

Evolution of the genes in the response function

The boundary curve produced by third-person fitness opti-
mization model is the end point of evolution by natural 
selection. Indeed, one could imagine that the upper panel 
of Figure 3 is the result of the evolutionary competition 
between a large number of boundary curves, leading to 
one that provides the maximum survival of individuals 
carrying it, although doing this is not trivial in general 
(Gomulkiewicz and Beder, 1996; Beder and Gomuliewicz, 
1998; Gomuliewicz et al., 2018). As a start, one could 
assume an asexual population, in which large number ran-
domly chosen boundary curves are allowed to compete 
with each other across generations.

For the canonical problem, we model the evolution of 
the genes of the response functions in a sexual population 
as follows. Suppose that the number of individuals who 
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The individual is now characterized by the five genes 
xq, yq, xt, yt and σsettle. In order to keep comparisons between 
the first- and third-person models as simple as possible, I 
assume that yq, yt and σsettle are rapidly fixed (the Y-genes at 
the values used above yq = 0.485, yt = 4, and σsettle = 0.1). 
Doing so allows us to focus on the two X-genes, which is 
a complicated enough.

In Figure 7, I show heat maps in the time/quality plane 
of the probability of settling for eight randomly chosen 
combinations of the two X-genes. There are broad swaths 
in the time/quality plane where individuals will almost 
surely continue to search (the dark blue regions), and other 
areas (the upper right corners that are red) where individu-
als will almost surely settle. But the particular way these 
regions are joined varies according to the genes that an 
individual carries, and this will lead to variation in the 
acceptance of sites with moderate quality over time (the 
sky-blue bands).

It is straightforward to adapt the forward Monte Carlo 
simulation from the third-person fitness optimization 
model to the first-person umwelt model. The difference is 
that in the third-person model only a single population is 
simulated but in the first-person model we simulate across 
generations that are linked by dynamics of the genes. 
Because of the assumption of a rich resource environment 
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Figure 7. Heat maps in the time/quality plane of the probability of settling for eight randomly chosen combinations of the quality and time 
X-genes, with the Y- and σ- genes fixed.

survive the harsh environmental season is Ns. When indi-
viduals mate randomly, the number of breeding pairs Np 
is the integer part of Ns/2. Now consider a generic pair of 
parents, whose quality and time genes are (xq(p₁), xt(p₁)) 
and (xq(p₂), xt(p₂)), where pi denotes the ith parent of the 
breeding pair. If xq,off and xt,off denote the quality and time 
genes of one of their offspring (all the other genes remain 
fixed across generations), we assume that

x x p x p
x x
q off q q e q e q ga q q

t off

, , , ,

,

[ ] .
[
( ) ( ) ( )1

2 1 2
1
2

0 5N U

tt t e t e t ga t tp x p( ) ( ) ( )] ., , ,1 2 0 5N U
  (8)

In these equations, the left sides are the quality and time 
genes of the offspring and the terms on the right side are 
respectively the parental midpoint, a Gaussian modification 

of the parental midpoint where 𝒩e,q and 𝒩e,t denote nor-
mally distributed random variables with mean 0 and vari-
ance 1, σe,q and σe,t are mutational and environmental 
factors causing deviation from the parental midpoint; and 
𝒰e,q or 𝒰e,t are uniformly distributed random variables on 
the interval [0,1] multiplied by an intensity factor μe,q or 
μe,t serving as a proxy for a full genetic algorithm. The first 
two terms on the right side are common; the third term 
allows for a higher probability of larger deviations from 
the parental midpoint and replaces a full genetic algorithm.

Assuming strong density dependence after reproduc-
tion but before the subsequent generation begins search-
ing for refuges allows us to assume constant population 
size across generations. Since there are Ns survivors of the 
harsh environmental season and Np breeding pairs, each 
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breeding pair contributes at least the integer part of N/Np to 
the next generation. There remain N − N · int[N/Np] places 
to fill in the next generation, and I allocate those sequen-
tially across the offspring of the breeding pairs. For exam-
ple, if 500 individuals are simulated per generation, when 
there are 288 survivors, and thus 144 breeding pairs, each 
breeding pair is assigned int[500/144]=3 offspring in the 
next generation. There remain 500-3·144=68 offspring to 
assign, so that in the next generation there are 4 offspring 
for the first 68 individuals and 3 offspring for the remain-
ing 432 individuals.

Assessing the effect of evolution on survival and 
the convergence of the predictions of the first- and 
third-person models

For the first-person umwelt model alone, we can ask 
whether evolution of the genes in the response functions 
matters in the sense that survival in a subsequent evolved 
generation (we will use the 25th generation) is greater than 
survival in the initial generation in which the genotypes 
were randomly picked to initialize the simulation. Each  
run of the forward Monte Carlo simulation produces a 
single estimate of the fraction of individuals surviving, i.e. 
Ns/N.

Furthermore, each run of the forward Monte Carlo 
simulation of the first-person umwelt model generates fre-
quency distributions of times of death and settlement in 
each generation, similar to those for the third-person fit-
ness optimization model in the middle and lower panels 
of Figure 3. If the first-person umwelt model converges 
to the third-person fitness optimization model, we predict 
that the distributions of times of death or settlement in a 
subsequent evolved generation (also the 25th generation) 
will be closer in some sense to the distributions shown in 
Figure 3 than are the distributions of times of death and 
settlement in the initial generation when genotypes were 
randomly chosen.

We assess the effects of evolution of genes in the 
response functions and the convergence of the predictions 
of the first-person umwelt and third-person fitness opti-
mization models using Cohen’s d (Cohen (1988, 1994); 
Nakagaw and Cuthill (2007); White et al. (2013); Nakagawa 
et al. (2017); Methratta (2025)). The idea behind Cohen’s 
d is extraordinarily simple, and the development in Cohen 
(1988, pg 19ff) is still one of the best. Imagine that we have 
two sets of data, denoted by Z₁ and Z₂, of lengths N₁ and N₂ 
respectively. When the samples, with means M₁ and M₂ and 
common variances V, are assumed to be independent, the 
two-sample t-test is a natural starting point for statistical 
tests of a difference between Z₁ and Z₂. Cohen (1988, pg 
19) noted that in addition to assuming independence of the 
samples and equal (or nearly equal) variance, when using 
a t-test one assumes that the data are normally distributed. 
Cohen was working in behavioral sciences, in which the 
assumption of normality is far from assured and in which 
sample sizes may be wildly different, and was looking for 
an alternative to a statistical hypothesis test.

When the data come from an empirical source, whether 
observation or experiment, sample size will always be 

constrained. On the other hand, with a model sample sizes 
can be very large – indeed as large as one wants. This cre-
ates a difficulty with a t-test (or another other statistical 
hypothesis test) because we can always simulate a suffi-
ciently large sample size to reject a null hypothesis of no 
difference. That is, because the power of a statistical test 
increases with sample size, any small difference eventu-
ally becomes statistically significant. Something other than 
standard statistical testing is needed for the comparison.

Cohen suggested that if we replace the assumed com-
mon variance by the pooled variance

V N V N V
N Npool

( ) ( )1 1 2 2

1 2

1 1
  (9)

then the formula for the t-test is a measure of the difference 
in the means scaled by their pooled standard deviation. He 
called this the effect size and denoted it by d

d M M
Vpool
1 2   (10)

Cohen (1988) suggested that absolute values of d less 
than 0.2 are a small effect size, around 0.5 are a medium 
effect size, and greater than 0.8 are a large effect size; see 
Figure 2 in Methratta (2025) for illustration of these differ-
ences. Other authors suggest a finer division of the scale 
of effect sizes. For example, Sawilowsky (2009) proposed 
that effect sizes less than 0.01 are very small, around 0.2 are 
small, around 0.5 are medium, around 0.8 are large, around 
1.2 are very large, and around 2.0 are huge. The crucial 
point is that Cohen’s d standardizes the difference between 
the means by the pooled standard deviation and avoids for-
mal hypothesis tests when they are not appropriate.

Since it requires all the replicates of the forward Monte 
Carlo simulation to generate single estimate of survival, 
we can compute only one value of Cohen’s d to compare 
survival in the initial (random) and 25th (evolved) genera-
tions. However, since each replicate of the forward Monte 
Carlo simulation produces distributions of the times of 
death and survival, each replicate of the Monte Carlo sim-
ulation has its own value of Cohen’s d.

Results

I first address the evolution of the genes in the first-person 
umwelt model, then whether survival increases due to the 
evolution of the genes, and finally, in what sense the pre-
dictions of the first-person umwelt model and third person 
fitness optimization models converge.

The genes evolve

In Figures 8 and 9, I show the distributions of the X-genes 
for quality and time in the first 12 generations when the 
additive genetic variances σe,q and σe,t are sufficiently high 
to maintain genetic diversity (Figure 8) or too small to 
maintain genetic diversity (Figure 9). In both cases, evo-
lution from a uniform distribution of genes in the first 
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generation is rapid towards a quasi-stable state; we return 
to why this occurs in the Discussion.

Strong selection removes extreme values of the genes, 
so that a peaked distribution that continues to fluctu-
ate is quickly reached. I will refer to this as the quasi- 
steady state.

Generation g=1 Generation g=1

Generation g=4 Generation g=4

Generation g=7 Generation g=7

Generation g=10 Generation g=10

Quality gene value                    Quality gene value                 Quality gene value     

Quality gene value                    Quality gene value                 Quality gene value  

Quality gene value                    Quality gene value                 Quality gene value  

Quality gene value                    Quality gene value                 Quality gene value  

Time gene value                    Time gene value                      Time gene value  

Time gene value                    Time gene value                      Time gene value  

Time gene value                    Time gene value                      Time gene value  

Time gene value                    Time gene value                      Time gene value  

Figure 8. Example of the evolution of quality genes (left panels) and time genes (right panels) when σe,q and σe,t in Equation 8 are sufficiently 
high (both 0.25) to maintain genetic variation; μga = 0.15. Generation time runs across columns and then down rows in both plots. The initial 
distributions are realizations of uniform distributions.

Generation g=1 Generation g=1

Time gene value                    Time gene value                      Time gene value  

Generation g=4 Generation g=4

Generation g=7 Generation g=7

Generation g=10 Generation g=10

Quality gene value                    Quality gene value                 Quality gene value  

Quality gene value                    Quality gene value                 Quality gene value  

Quality gene value                    Quality gene value                 Quality gene value  

Quality gene value                    Quality gene value                 Quality gene value  

Time gene value                    Time gene value                      Time gene value  

Time gene value                    Time gene value                      Time gene value  

Time gene value                    Time gene value                      Time gene value  

Time gene value                    Time gene value                      Time gene value  

Figure 9. Example of the evolution of quality genes (left panels) and time genes (right panels) genes when σe,q and σe,t in Equation 8 are not 
high enough (both 0.025) to maintain genetic variation; μga = 0.15. Generation time runs across columns and then down rows in both plots. The 
initial distributions are realizations of uniform distributions.

Evolution leads to increased survival

To assess whether evolution of the genes matters for fit-
ness (survival) or not, we compare the fraction of individu-
als surviving in the first generation with the fraction of 
individuals surviving in the 25th generation. (Figure 10). 
In this figure, survival in the initial generation is clearly 
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lower than in the evolved generation. The effect size d = 2.3 
and “huge” according to the classification of Sawilowsky 
(2009).

Convergence of the first-person and third-person 
model predictions

From the initial to the 25th generation, Cohen’s d for time 
of death declines by a factor of about 3 (Figure 11) and 
Cohen’s d for the time of settlement declines by a factor 
of about 2 (Figure 12), with associated effect sizes that are 
small and medium respectively. Because of the rapid evo-
lution to the quasi-steady state of the genes, we should not 
expect much additional improvement in Cohen’s d if we 
waited longer in the evolutionary process.

Discussion

In the third-person fitness optimization model the proba-
bility of survival is specified (or in more complicated mod-
els, is given a distribution that is then updated over time) 
but in the first-person umwelt model, there is no assump-
tion that the individuals know the probability of survival. 
The first-person umwelt model is thus very different than 
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Figure 10. Each run of the full Monte Carlo simulation of the first-person umwelt model leads to a 
single value for the fraction of individuals surviving to reproduce. In this figure the fraction of survivors 
in the first generation is shown in red and the fraction of survivors after 25 generations is shown in 
black. In general, evolution of the genes determining the response functions leads to higher survival. 
The value of the effect size is d = 2.3, which is huge according to the classification of Sawilowsky 
(2009).

0 100 200 300 400 500

0.
1

0.
2

0.
3

0.
4

Simulation number

C
oh

en
's

 d
 fo

r d
ea

th

Figure 11. Convergence of the predictions of the first-person umwelt and third-person fitness 
optimization models by comparing distributions for the times of death for the simulation of the 
first-person umwelt model to those in Figure 3 for each iterate of the simulation. The red circles show 
the value of Cohen’s d in the first generation and the black circles show the value of Cohen’s d after 
25 generations.

a Bayesian model of learning, in which individuals begin 
with an inherited probability distribution that is updated 
over time (Mangel, 1993). At the end of the evolutionary 
trajectory in the first-person umwelt model, the individuals 
in the current generation have no more knowledge about 
the distribution of the probability of survival (or the spe-
cific value) than their ancestors. It remains to be seen how 
the computational complexities of a Bayesian model of 
learning and the first-person umwelt model compare.

In changing environments, third-person fitness optimi-
zation models give the endpoints of evolution in response 
to the changed environment. Thus, we can predict how 
behavior and reproductive success ultimately respond to 
a change in environmental conditions if there is sufficient 
genetic variation but not whether the new evolutionary 
endpoint will be reached or how and when it will hap-
pen (Sattherthwaite et al. (2010)). On the other hand, the 
first-person umwelt model provides that information gen-
eration by generation, as the genes of the response func-
tions evolve due to the changing environment.

Furthermore:

	– The improvement in survival with the evolved genes 
suggests that we have a generally good model and the 
speed with which the quasi-steady state distribution of 
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genes is reached is likely due to the (intentionally) low 
complexity of the canonical problem. If we allowed the 
Y-genes and σsettle to evolve as well, it is likely that even 
smaller values of effect size could be obtained but also 
that the genetic landscapes become more complex and 
rugged.

	– It is natural for quality to have multiple characteristics. 
For example, the quality of a burrow for a desert insect 
might depend upon depth (q₁), temperature (q₂), and 
humidity (q₃). This suggests replacing Equation 11 by 
a weighted sum of response functions

R q q qq i
q

q y
i i
xqi

i
xqi

qi

xqi
( ), ,1 2 3 1

3   (11)

	– where the ωi sum to 1 and measure the importance of 
that aspect of quality to the overall response. Eliassen 
et al. (2016) explored a version of Equation 11 and 
found that for the ecological scenario they modeled – 
a small fish moving vertically in the water column in 
response to hunger and predators – the behaviors based 
on the simpler or more complicated response func-
tion were generally the same. It remains an interest-
ing empirical question to ask how multiple factors that 
determine quality can be blended in the best way in the 
response function.

	– A stronger response to quality indicates that the organ-
ism is more likely to settle in the current habitat. 
Giving a third-person perspective to this first-person 
response, we might say that the response tells us how 
the individual “feels” about the quality of the currently 
encountered habitat. A stronger response to time means 
that the individual is more likely to continue searching. 
From a third-person perspective, this response tells us 
how the individual “feels” about survival in the envi-
ronment. We are thus modeling feelings or emotions 
and providing a canonical mechanism for how they 
are made (Feldman Barrett, 2017). Since habitat qual-
ity and probability of survival both influence settling 
behavior, it may be possible to gauge how survival 
is perceived by the individual through its behavioral 
response to habitat quality.

Some future directions

Extensions of the canonical model include:
Adding a state variable. In order to keep the models 

as simple as possible, I assumed that the state, e.g. weight 
of the focal individual denoted by W(t) with specific value 
w, was constant. This was the main role of the rich envi-
ronment during the season in which individuals search for 
a refuge. For higher fidelity to nature, one could assume 
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that weight declines during search and time in the refuge. 
Even higher fidelity could assume stochastic increases 
in weight, as in the patch selection model of Mangel and 
Clark (1988). If the state dynamics were a decline by an 
amount c₁ during each time interval of search and by c₂ 
after settlement, before the individual settles the dynamics 
of the state are

W(t + 1) = W(t) − c₁  (12)

with W(1) = w₀ specified. After settlement, the dynamics 
are similar to those in Equation 12 with c₁ replaced by c₂.

If an individual settles at time t, its state at the end of 
the harsh environmental season will be w₀ − (c₁t + c₂(T 
− t)). Assuming that Survival is proportional to relative 
weight at the end of the harsh environmental season, the 
Survival ϕ(t, q) of an individual who settles into a habitat 
of quality q at time t is then

t q q c t c T t
w, ( )S 1 1 2

0
  (13)

We then replace 𝒮(q) by ϕ(t, q) in both Equation 4 and the 
forward Monte Carlo simulation in the first-person umwelt 
model.

Reproductive success depending on quality of the 
habitat. Equation 13 accounts for survival depending upon 
state in a very simple manner and quality of the habitat 
into which the individual settles, but offspring produc-
tion is still constant across survivors. When the number of 
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Figure 12. The analog of Figure 11 for the times of settlement.

offspring produced 𝒪(q) depends on quality q of the habi-
tat, we need to separate males and females because males 
may simply have to survive the harsh environmental sea-
son to reproduce, whereas offspring production by females 
may depend on habitat quality differently than survival. In 
this case, in the third-person fitness optimization model we 
require potentially separate SDP equations for male and 
females, even if random mating occurs. The logic of the 
first-person umwelt model remains unchanged until repro-
duction, but there will be many other modeling choices 
that have to be made about the details of reproduction.

Additional sources of mortality. In addition to the 
background mortality some environments may include an 
occasional source of secondary mortality. In that case, σ in 
Equation 4 can be interpreted as the background mortality; 
we introduce the probability ps(t) that a secondary preda-
tor is present at time t and the probability σs of surviving 
the secondary predator. The straightforward extension of 
Equation 4 is

F(t) = ∑q f(q, t)[(1 − ps(t))max(𝒮(q), σF(t + 1)) 
	 +ps(t)max(𝒮(q), σsσF(t + 1))]  (14)

Equation 14 generates two boundary curves in the time/
quality plane, corresponding to whether the secondary 
predator is present or not.

Two responses to time will be required in the first-
person umwelt model, with Equation 6 applying when 
there is no signal of a secondary predator. When a signal 
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of the secondary predator is received, we add a modifier 
gene zt to Equation 6

R tt s
z T t
y T t
t

xt

t
xt xt,
( )
( )

( )   (15)

As long as zt is less than 1 the response when a signal of 
the secondary predator is received will be weaker than in 
the absence of the signal, and thus the focal individual will 
be more likely to settle.

Moving towards the dynamic game. For the third-person 
fitness optimization model, a method for treating the 
dynamic game is well known but rarely trivial [McNamara 
and Houston (1999); Clark and Mangel (2000); Alonzo 
et al. (2003) for a particular application]: One iterates 
between the solution of the SDP equation and the forward 
Monte Carlo simulation. On the first iteration, we proceed 
exactly as above when solving the SDP equation. After the 
forward iteration, we replace the distributions of habitat 
quality in Equation 3 by those that emerged from the for-
ward Monte Carlo simulation and then resolve the SDP 
equation and forward simulate behavior once more. This 
procedure is repeated until it stabilizes, in the sense that 
the best response to the distribution of habitat quality over 
time generates, to within reasonable errors, the distribution 
of habitat quality over time used in the SDP generating the 
boundary curve.

Refine comparisons using Hellinger distance. Since 
Cohen’s d relies on means and variances only, it does not 
take full advantage of the distributions produced during 
the forward Monte Carlo simulations. An alternative is 
Hellinger’s distance [Hellinger (1909); Cha (2007); Ditzler 
and Polikar (2011); Warren et al. (2008)], which compares 
properties of full distributions. For a canonical problem 
Cohen’s d is a good choice, but Hellinger’s distance will 
likely be a better tool for comparisons when first-person 
umwelt and third-person fitness optimization models are 
developed for particular species in particular situations.

Conclusions

The canonical model for habitat selection developed as a 
third-person fitness optimization model continues a long 
tradition of successful third-person modeling in behavioral 
and evolutionary ecology. The first-person umwelt model 
has higher fidelity to the means by which behavior is deter-
mined and complements the third-person perspective. 
Neither is intended to model a particular organism in a par-
ticular situation. Rather, both are intended to capture the 
essential idea of habitat selection and by further develop-
ment be applied more specifically. In this regard, they can 
be viewed as the first of a series of models of increasing 
complexity that allow us to focus on questions of increas-
ing complexity [see Clark and Mangel (2000, Chapter 4) 
for the development of such a series of models for para-
sitoid oviposition behavior]. Both first-person umwelt and 
third-person fitness optimization models will contribute to 
deeper understanding of the natural world. Indeed, a most 
exciting prospect is to envision empirical data concerning 

particular organisms in particular situations comple-
mented by the development of both first-person umwelt 
and third-person fitness optimization models and the sub-
sequent confrontation of models and data.

Neither Leon nor I knew of Nagel (1974) when we first 
worked together. However, I can easily imagine conversa-
tions in which Leon might have mused that “I want to know 
what it means to be a mosquito” or “I want to know what 
it means to be a Salamandra (fire salamander)”. Models 
using the first-person umwelt perspective have great 
potential to answer these questions, and similar questions 
for organisms as diverse as desert isopods (Zaguri et al. 
(2018); Zaguri and Hawlena (2020)), octopuses (Hanlon 
and Messenger (1996/2003); Mather et al. (2010)), or 
salmon (Budaev et al. (2024); Giske et al. (2025a)).
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